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Curves of  asymptot ic  probabil i ty densities appropr ia te  to the cont inuous-  
t ime r a n d o m  walk model  of  Montrol l  and Weiss are presented and are 
calculated numerically using the fast Four ier  t ransform.  The behavior  of  
the momen t s  is briefly discussed and it is shown that  the Einstein formula  
relating the diffusion and mobility coefficients can be generalized to 
include the case where the mean  waiting time between hops  is infinite. 
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1. INTRODUCTION 

In a previous paper Tunaley ~1) derived the asymptotic probability densities 
for random walks based on the continuous-time model of  Montroll and 
Weiss. (2~ A scaling process is employed so that as time progresses the scale of  
length is expanded. In the limit; the shape of the distribution or density 
curve is unchanged by the scaling (given certain conditions of regular varia- 
tion in the underlying densities) and it is shown that the limiting forms can 
be expressed in terms of the stable densities. Both symmetric walks, appro- 
priate to pure diffusion, and asymmetric walks, relevant to diffusion with 
drift, are covered. In all cases the mean and variance of the distance traveled 
in one hop are finite while the waiting time between hops may have infinite 
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Exponent 

Table I 

Symmetricdiffusion 
0 < v < I  

l < v ~ 2  

1 t 

)1 [ , ]  P X <  x , t  = = 2 S v t 2 ~  , x < O  

(Normal with variance 2Dt  = cr2t /~) 

~ 0  =~$I j2  ~ ,  x > O  

~o < x,  t = ~ $Ij2 , x < O  

Asymmetric diffusion 

0 < v < l  

l < v < 2  

v---2 

. . . .  S , (x)  
IX (Z 

Normal distribution with mean distance Ixt/c, 

and variance 2 D ' t  = (~2 _ 21.2 + t .2[j/~2)t/~ 

mean  or  var iance.  The  results  are shown in Table  I. Here  the same no ta t ion  
is used as in Ref. 1 :/~, eo 2, and  cr 2 are the mean,  var iance,  and  mean  square 
distances covered in one h o p ;  c~ and/3  are  scale cons tants  in the d i s t r ibu t ion  
of  the wai t ing  t ime. Sv represents  a stable d i s t r ibu t ion  with  zero centering,  
uni t  scale pa ramete r ,  and  exponent  v. W h e n  1 < v < 2 i t  is two-s ided  bu t  
asymmetr ic .  

A fast  Four i e r  t r ans fo rm p r o g r a m  was employed  to compute  the s table 
densit ies f rom their  character is t ic  funct ions directly,  using 1024 poin ts  for  
1 < v ~< 2 and  8192 poin ts  for 0 < v < 1. The  character is t ic  funct ions,  wi th  
unit  scale parameters ,  are  

e x p [ - I ~ o l V e x p ( + i r r v / 2 ) ] ,  0 < v < 1 

e x p [ l ~ o [ V e x p ( + i r r v / 2 ) ] ,  1 < v <~ 2 (1) 

where the plus  signs app ly  when co ~< 0 and  the minus  signs when co > 0. In  
the case v = 2 we have a no rma l  densi ty  with var iance  equal  to two. 

The  results for  0 < v < 1 were checked for  large t imes by employ ing  
the Taube r i an  theorem (3~ on the Laplace  t r ans fo rm equivalent  to Eq. (1). 
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Figures 1-3 show the one-sided densities corresponding to S T ( x - l / y )  for 
7 = 0.4, 0.5, and 0.8, respectively. For pure diffusion with 0 < v < 1 only 
the first curve is relevant and should be reflected about  the origin (the factor 
1 necessary for normalization should be included). It  should be noted that 
the result of  this symmetrization is not equivalent to the use of  a ~ symmetric 
stable distribution," which has characteristic function exp (-tm[~).  I t  is 
evident that the density for v = 0.8 (~ = 0.4) is somewhat more peaked at 
the origin than the normal curve, which is actually reproduced when the 
density corresponding to 7' = 0.5 is symmetrized. This latter naturally 
applies when v = 2 and also when 1 < v < 2 (see Table 1). 

On the other hand, when drift is present there is a qualitative difference 
between the densities according to whether v < �89 or �89 < v < 1. For the 
former case the density is the one-sided version of the diffusion curve and 
exhibits a sharp step at the origin to its peak value, while for the latter, again 
we have a step at the origin but the maximum occurs at a finite distance. The 
step is due to the significant probability that in time t some particles have 
not performed any jump. For  example, the asymptotic result gives 

p(O, t )  d x  = ~ a x / I x t q ' ( 1  - v) (2) 

(to arrive at this, the Tauberian theorem can be used to find the behavior of  
a stable density at large times(a~). However, f rom first principles, if the 
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Fig. 1. The density corresponding to the stable distribution So 4(x -2~) 
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Fig. 2. The density corresponding to the stable distribution So.s(x-2). 
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Fig. 3. The density corresponding to the stable distribution So.~(x-1.25). 
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distribution of waiting times is F(t),  the probability that there has been no 
jump in time t is 

P [ T  > t] = 1 - F ( t )  (3) 

But 1Lhe original postulate in Ref. 1 was 

1 - F ( t )  = ~ / t ~ r ( 1  - ~), t - *  oo (4)  

so that, since a particle is located typically over a distance ~, we have essen- 
tially the same result as Eq. (2). This behavior is similar to that calculated by 
Montroll  and Sher (4) for those of  their waiting time densities, which have 
the asymptotic form 

(~) -1~2t  -~/~ (5)  

which shows that v = �89 is appropriate and the results correspond to Fig. 2. 
For l < v < 2 with drift, the density is that of  an asymmetric stable 

density with a long tail toward the origin. This density drifts with a velocity 
~/c~. The curves shown in Figs. 4-6 for v = 1.2, 1.5, and 1.9 are asymmetric 
stable densities with their centering at the origin, unit scale factor, and the 
long tail on the positive half-axis (to represent drift from left to right, they 
should be turned around). One of the main points of  interest is the fact that 
their peaks do not lie at the origin, unlike the normal density. 
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Fig. 4. The density corresponding to the asymmetric stable distribution $12(x). 
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Fig. 5. The density corresponding to the asymmetric stable distribution S~.a(x). 
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Fig. 6. The density corresponding to the asymmetric stable distribution Sl.s(x). 
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2. G R O S S  B E H A V I O R  

The mean and variance of the distance covered in time t for large t have 
been examined by Shlesinger/5~ His results are more general than those to 
be presented here but the same technique can be applied. For example, the 
Laplace transform of the mean distance can be found by differentiating the 
Montroll-Weiss (MW) equation: 

( x(s ) ) = - i[ Op(k, s )/Ok ]k =o (6) 

It is easily verified that we can let t - ~  oe in Shlesinger's equations and 
obtain the same result as by differentiating the asymptotic MW transforms: 
For  0 < v < 1 we have for pure diffusion 

(x(t)} = 0 (7)  

<x~(t)} = .2ty/~r(1 + ~) (8) 

while for 0 < v < 1 and asymmetric diffusion 

( x ( t ) }  = t~t~/~r(1 + ~) (9) 

(x2( t )}  = 2t~2t2~/~r(1 + 2~) (10) 

As pointed out by Shlesinger, the behavior of  asymmetric diffusion is 
unusual for 0 < u < 1 in that the dispersion (standard deviation) grows as 
quickly as the mean. 

For 1 < v < 2 the situation is quite different. For symmetric diffusion 
the density is normal with variance given by ,2 t /a  (the diffusion coeff• 
is ,2/2~). With a drift the density has a velocity p]a and ifu = 2, the variance is 

(.2 _ 2t& + t&fi/a2)t/e~ (11) 

However, if 1 < v < 2, the variance is apparently infinite (we must bear in 
mind that this really means that as t--~ oe the variance tends to infinity). 
Nevertheless, we can still employ the properties of  stable distributions to 
note that the dispersion as measured by the half-width (say) varies as t 1/~, 
by an examination of Eq. (57) in Ref. 1. Thus the dispersion grows faster 
than that for ordinary diffusion (tl/2). 

3. E INSTEIN  RELATION 

The Einstein relation expresses the fact that for a system exhibiting a 
linear response the ordinary diffusion coefficient D is related to the mobility 
K, i.e., 

D = k T K  (12) 

where k is Boltzmann's constant and T is the temperature. It is evident that 
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for well-defined coefficients to exist we must move into the realm of asymp- 
totic behavior. If  a mean hopping time exists (1 < v < 2), the mobility can 
be expressed readily in terms of microscopic parameters. Defining 

K = (drift veloeity)/F (13) 

where F is the applied force on the particle, yields 

K = tz/aF 

On the other hand, for diffusion in the absence of a field and again for 
l < v < 2  

D = ~o2/2a 

Thus 

D / K  = ~o2F/21~ (14) 

To make full use of the MW formulation the following model is intro- 
duced. A one-dimensional string of potential barriers of equal heights is set 
up with the condition that the distances between the centers of neighboring 
wells are independent random variables. A particle naturally sits mainly in 
the center of a well, but, since we shall assume that it is essentially in thermo- 
dynamic equilibrium within any particular well, it is subject to the thermal 
agitation of the lattice and has a small probability of jumping over the 
barriers into the wells on either side. It will be deemed to be making a transfer 
if it is found at the top of a barrier (see Fig. 7). The distances between the 
tops of the barriers are denoted by xj: Unfortunately, if the distances between 
well centers are independent, the xj will usually not be. 

From the theory of statistical thermodynamics we know that the 
probability of the particle's being found at the top of the barrier of the 
j t h  well is proportional to 

exp( + F x / 2 k T )  (15) 

.2 .Z 

Fig. 7. The model of random potential barriers. 
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where the plus sign is appropriate to the barrier in the direction of  the 
applied field and the minus sign to the reverse direction. By the earlier 
definition these probabilities are proportional to the probabilities of transfer. 
Only two outcomes are relevant, so that normalizing and expanding in 
small F (linear response) yields 

P [forward jump = 1(1 + Fxj/2kT) 
P[reverse jump] = �89 - Fxj/2kT) (16) 

The mean distance traveled in a jump is therefore given by 

~ =  2 2 2 2 

x p(xj-1,  xj, xj+l) dxj-1 dx3 dxj+l 

F 2 
- 4~-i?((xj ) + (xjxj+l))  

(17) 

(clearly (xjxj + 1) = ( x i -  lxj)). 
In the absence of an applied field the probability of a forward jump is 

equal to that of a reverse jump. Thus 

x p(x j_l ,  xj, xj+l) dxj_~ dxj dxj+~ 

= �89 2) + (xyxj+l)) (18) 

Inserting these results into Eq. (14) shows that the Einstein relation is valid 
for all MW-type random walks corresponding to 1 < v < 2. 

For example, in Brownian motion Stokes' law is usually invoked to 
find K, e.g., 

F = 6=•a(drift velocity) (19) 

where ~ is the viscosity of the medium and a is the radius of the particle. We 
find that the usual formula 

D = kT/6~r~la (20) 

is valid even if the variance of the time interval between movements is 
infinite. This would correspond perhaps to a type of deep trapping; the 
effect of any trapping would be reflected in the value of 7. 

Consider now the case 0 < v < 1 where a mean drift rate does not 
exist. We can define coefficients 

De = ~o2/2~ (21) 
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and 

K~ = ix/aF 

so that  Eqs. (8) and (9) become 

(x2( t ) )  = 2DetV/P(1 + v) 

and 

(22) 

(23) 

(x ( t ) )  = KeFtv/P(1 + v) (24) 

However,  the ratio D e / K  e is independent  o f  ~, so that  the same treat- 
ment  as applied before to the Einstein relation is valid and 

De/Ke = k T  

Thus an observat ion o f  the drift behavior  of  particles [Eq. (24)] allows the 
pure diffusion behavior  to be calculated [Eq. (23)]. The appropriate  density 
for symmetric diffusion in Table I is also implied. 
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